Editor Version ×

1.Easy to use and quick to get started

2.The process supports design scales of 300 devices or 1000 pads

3.Supports simple circuit simulation

4.For students, teachers, creators


1.Brand new interactions and interfaces

2.Smooth support for design sizes of over 30,000 devices or 100,000 pads

3.More rigorous design constraints, more standardized processes

4.For enterprises, more professional users

STD MPU6500 Six-Axis (Gyro + Accelerometer) MEMS

Project Status: Ongoing


  • 4.3k
  • 0
  • 0
Creation time: 2015-11-23 00:46:05
Update time: 2021-04-10 12:14:49
**General Description**: The MPU-6500 is a 6-axis MotionTracking device that combines a 3-axis gyroscope, 3-axis accelerometer, and a Digital Motion Processor™ (DMP) all in a small 3x3x0.9mm package. It also features a 4096-byte FIFO that can lower the traffic on the serial bus interface, and reduce power consumption by allowing the system processor to burst read sensor data and then go into a low-power mode. With its dedicated I 2C sensor bus, the MPU-6500 directly accepts inputs from external I 2C devices. MPU-6500, with its 6-axis integration, on-chip DMP, and run-time calibration firmware, enables manufacturers to eliminate the costly and complex selection, qualification, and system level integration of discrete devices, guaranteeing optimal motion performance for consumers. MPU-6500 is also designed to interface with multiple non-inertial digital sensors, such as pressure sensors, on its auxiliary I 2C port. The gyroscope has a programmable full-scale range of ±250, ±500, ±1000, and ±2000 degrees/sec and very low rate noise at 0.01 dps/√Hz. The accelerometer has a user-programmable accelerometer full-scale range of ±2g, ±4g, ±8g, and ±16g. Factory-calibrated initial sensitivity of both sensors reduces production-line calibration requirements. Other industry-leading features include on-chip 16-bit ADCs, programmable digital filters, a precision clock with 1% drift from -40°C to 85°C, an embedded temperature sensor, and programmable interrupts. The device features I2C and SPI serial interfaces, a VDD operating range of 1.71 to 3.6V, and a separate digital IO supply, VDDIO from 1.71V to 3.6V. Communication with all registers of the device is performed using either I 2C at 400kHz or SPI at 1MHz. For applications requiring faster communications, the sensor and interrupt registers may be read using SPI at 20MHz. By leveraging its patented and volume-proven CMOS-MEMS fabrication platform, which integrates MEMS wafers with companion CMOS electronics through wafer-level bonding, InvenSense has driven the package size down to a footprint and thickness of 3x3x0.90mm (24-pin QFN), to provide a very small yet high performance low cost package. The device provides high robustness by supporting 10,000g shock reliability. **Features**: 2.1 Gyroscope Features The triple-axis MEMS gyroscope in the MPU-6500 includes a wide range of features: Digital-output X-, Y-, and Z-axis angular rate sensors (gyroscopes) with a user-programmable fullscale range of ±250, ±500, ±1000, and ±2000°/sec and integrated 16-bit ADCs Digitally-programmable low-pass filter Gyroscope operating current: 3.2mA Factory calibrated sensitivity scale factor Self-test 2.2 Accelerometer Features The triple-axis MEMS accelerometer in MPU-6500 includes a wide range of features: Digital-output X-, Y-, and Z-axis accelerometer with a programmable full scale range of ±2g, ±4g, ±8g and ±16g and integrated 16-bit ADCs Accelerometer normal operating current: 450µA Low power accelerometer mode current: 6.37µA at 0.98Hz, 17.75µA at 31.25Hz User-programmable interrupts Wake-on-motion interrupt for low power operation of applications processor Self-test 2.3 Additional Features The MPU-6500 includes the following additional features: Auxiliary master I 2C bus for reading data from external sensors (e.g. magnetometer) 3.4mA operating current when all 6 motion sensing axes are active VDD supply voltage range of 1.8 – 3.3V ± 5% VDDIO reference voltage of 1.8 – 3.3V ± 5% for auxiliary I2C devices Smallest and thinnest QFN package for portable devices: 3x3x0.9mm Minimal cross-axis sensitivity between the accelerometer and gyroscope axes 4096 byte FIFO buffer enables the applications processor to read the data in bursts Digital-output temperature sensor User-programmable digital filters for gyroscope, accelerometer, and temp sensor 10,000 g shock tolerant 400kHz Fast Mode I 2C for communicating with all registers 1MHz SPI serial interface for communicating with all registers 20MHz SPI serial interface for reading sensor and interrupt registers MEMS structure hermetically sealed and bonded at wafer level RoHS and Green compliant 2.4 MotionProcessing Internal Digital Motion Processing™ (DMP™) engine supports advanced MotionProcessing and low power functions such as gesture recognition using programmable interrupts In addition to the angular rate, this device optionally outputs the angular position (angle). Low-power pedometer functionality allows the host processor to sleep while the DMP maintains the step count. **Applications**: TouchAnywhere™ technology (for “no touch” UI Application Control/Navigation) MotionCommand™ technology (for Gesture Short-cuts) Motion-enabled game and application framework Location based services, points of interest, and dead reckoning Handset and portable gaming Motion-based game controllers 3D remote controls for Internet connected DTVs and set top boxes, 3D mice Wearable sensors for health, fitness and sports
Design Drawing
schematic diagram
1 /
1 /
The preview image was not generated, please save it again in the editor.
ID Name Designator Footprint Quantity
1 MPU6500 U1 DIP 1
2 1u C1,C2,C3 C1 3
3 SIP10 P1 HDR1X10 1
4 1k R1,R2 R3 2


Project Attachments
Project Members
Target complaint
Related Projects
Change a batch
Add to album ×


reminder ×

Do you need to add this project to the album?


周一至周五 9:00~18:00
  • 0755 - 2382 4495
  • 153 6159 2675


周一至周五 9:00~18:00
  • 立创EDA微信号


  • QQ交流群


  • 立创EDA公众号